
www.manaraa.com

Policy-controlled Event Management for Distributed Intrusion Detection

Christian Kreibich
University of Cambridge

Computer Laboratory
christian.kreibich@cl.cam.ac.uk

Robin Sommer
Technische Universität München
Computer Science Department

sommer@in.tum.de

Abstract

A powerful strategy in intrusion detection is the separa-
tion of surveillance mechanisms from a site’s policy for pro-
cessing observed events. The Bro intrusion detection system
has been using the notion of policy-neutral events as the ba-
sic building blocks for the formulation of a site’s security
policy since its conception. A recent addition to the sys-
tem is the ability to exchange events with other Bro peers to
allow distributed detection. In this paper we extend Bro’s
existing event model to fulfill the requirements of scalable
policy-controlled distributed event management, including
mechanisms for event publication, subscription, processing,
propagation, and correlation.

1. Introduction

In the light of ever-increasing numbers of security in-
cidents in computer infrastructures, the field of intrusion
detection has received a significant amount of interest in
recent years. The goal of these systems is to detect mali-
cious activity as quickly as possible in order to allow swift
response and to provide substantial forensic evidence to un-
derstand the damage inflicted. This effort has led to the de-
velopment of a variety of different intrusion detection sys-
tems (IDSs) [1]. One of the lessons learnt in the field is that
IDSs operating individually do not understand the “big pic-
ture” — activity in a networked computer infrastructure is
too multi-faceted to permit this. In addition, security and
operational considerations do not allow a stand-alone setup
for organisations for all but the smallest LANs. As a con-
sequence, distributed IDSs have been proposed that allow
the various detection systems to communicate in order to
increase the collective field of vision.

In this application setting, the event-based communica-
tion paradigm is an obvious match: an individual IDS ob-
serves elementary events that are processed either in situ or
forwarded to another system for analysis, possibly generat-
ing new higher-level events for which the process repeats,

until the system at large has determined with sufficient
certainty that a security-relevant event is occurring. This
event is then logged, presented to the analyst, or triggers
an autonomous response. Traditionally, the communication
model such distributed IDSs have employed is a straightfor-
ward sensor/manager architecture where events are prop-
agated unidirectionally from “dumb” sensors to “smart”
manager nodes which abstract the elementary events into
semantically richer composite events. DIDS [14] was the
first to employ a such model. Today, many commercial sys-
tems follow a similar model. Other systems, such as Emer-
ald [13], build up a hierarchical structure and propagate in-
formation up to the root level. Similarly, AAFID [16] builds
on autonomous agents which communicate their results to
hierarchically organised monitors. NetSTAT [17] precon-
figures a set of probes with attack scenarios and distributes
them throughout a network. If a probe is not able to de-
tect an attack by itself due to the characteristics of its en-
vironment, it communicates its analysis to other probes as
appropriate.

The Bro IDS [11] has always relied heavily on the idea of
policy-neutral events as vehicles to convey the occurrence
of interesting activity. The site-specific security policy is
formulated in a domain-specific policy scripting language
and defines the interpretation of such events. A major im-
provement of the system was the introduction of a com-
munications framework that allows multiple Bro peers1 to
exchange state information [15]. While our initial exper-
iments with distributed event management have been very
encouraging, it also became apparent that more powerful
event processing mechanisms than we had at our disposal
were conceivable and in fact necessary to satisfy our re-
quirements.

In this paper, we present the event model we are devel-
oping for the Bro IDS to support scalable policy-controlled
distributed event analysis. The remainder of this paper is
structured as follows. We specify the requirements of our

1We will refer to communicating Bro IDSs as peers when context refers
to a group of nodes engaged in mutual communication, and as nodes when
the focus is on members of a network in general.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

event communication framework in Section 2. We then
outline Bro’s architecture in Section 3. Our event model
provides a flexible group-based publish/subscribe mecha-
nism, supports arbitrary event diffusion patterns, and allows
for complex abstraction of event occurrence into composite
events. We present the model in detail in Section 4. Dis-
tributed intrusion detection is a highly complex problem set-
ting, and turning the Bro system into a fully distributed IDS
is an ongoing process. We therefore discuss our assump-
tions, experiences, and expectations for future development
at length in Section 5 before we conclude the paper with
Section 6.

2. Event Communication Requirements

As a starting point, we begin by identifying the require-
ments of our event model.

• Expressiveness: Events must be expressive enough to
embody arbitrary types of activity, and must be struc-
tured enough to permit type-safe processing.

• Policy-controlled Event Processing: All aspects of the
event model must be configurable in a site’s policy, in-
cluding local event handling as well as event delivery
& forwarding schemes. Cooperative policy configu-
ration is of course desirable and in fact necessary to
achieve best results, but remote nodes must not be able
to interfere with local policy.

• Selective Receiver Interest & Notification: It must be
easy for Bro peers to indicate interest and end of in-
terest in both local and remote events. Peers must not
be bothered with events they are not interested in. At
the same time, a node must be given enough flexibil-
ity to allow for suitable communication patterns (e.g.,
broadcast or request/reply).

• Event Abstraction: The policy language must allow the
definition of event patterns and consequential abstrac-
tion into higher-level events.

• Scalability and Performance: The model must be
highly scalable and lend itself to a high-performance
implementation. Target environments are both local
networks and Internet-wide cooperations.

• Secure Communication: Peers must authenticate
themselves to their peers before exchanging events.
Other hosts must not be able to eavesdrop into or tam-
per with the flow of events.

• Homogeneous Language Extension: The changes to
the Bro scripting language necessary to support dis-
tributed event communication should blend in with the
existing syntax and semantics as much as possible.

Bro IDS

Policy Layer

Core

Policy Script Interpreter

Event Engine

Network Analysis Peer
Communication I/OT CPUDP H T T P Signature Engine...

Login Policy Scan Detector . . . W orm Detector

Network

libpcap SSL

Figure 1. Architecture of the Bro IDS.

3. Architecture of the Bro IDS

Bro’s architecture is described in detail in the original
paper [11] and remains basically unchanged, with the ex-
ception of support for communication among Bro nodes.
We repeat the architecture’s key elements here in condensed
form to put in context the event model and its implications
for distributed event processing. Figure 1 illustrates Bro’s
architecture.

3.1. Separation of Mechanism from Policy

The core idea of Bro is to split event detection mecha-
nisms from event processing policies. Event generation is
performed by analysers in Bro’s core: these analysers oper-
ate continuously based on input observed by Bro instances
and trigger events asynchronously when corresponding ac-
tivity is observed. Due to its strong basis in network-
based detection, Bro’s core contains analysers for a wide
range of network protocols such as RPC, FTP, HTTP, ICMP,
SMTP, TCP, UDP, and others. These analysers trigger
events whenever interesting activity in a network flow is
observed, for example when a new TCP connection is es-
tablished or an HTTP request is made. Besides that, a sig-
nature engine allows typical misuse-based intrusion detec-
tion: it matches byte string signatures against traffic flows
and triggers events whenever a signature matches. Once an
event is triggered, it is passed to the policy layer which then
takes care of processing the events. Care is taken to min-
imise CPU load: only analysers responsible for triggering
the events used at the policy layer are actually enabled.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

3.2. Policy Configuration

Each Bro peer runs a policy configuration in its policy
layer. This policy embodies all or part of a site’s secu-
rity policy, expressed in scripts formulated in the special-
purpose Bro scripting language. To understand the signif-
icance of this approach it is important to realise that the
relevance of an event varies from site to site — some sites
may consider the detection of a Microsoft IIS exploit at-
tempt on a pure UNIX network a threat, while others may
not. Bro’s policy language is strongly typed, procedural in
style, and provides a wide range of elementary data types
to facilitate the analysis of activity on a network. Elements
in the policy can be tagged with attributes, these attributes
serve to define meta-information about these elements, such
as state expiration, persistence for on-disk storage of state
across instances, etc. The basic building blocks of a policy
are event handlers which process occurring events in the
fashion called for by a site’s security policy.

3.3. Communication Framework

Bro’s communication framework allows the transmis-
sion of arbitrary kinds of state between Bro instances. The
driving idea behind its design was to allow the realisation
of independent state: state accumulated at the policy layer
should no longer be thought of as a local concept but rather
as information dispersed throughout the network. The com-
munication model imposes no hierarchical structure. Ex-
amples of exchangeable state include triggered events, state
kept in data structures in policies, and the policy definitions
themselves. For the purpose of this paper it is sufficient
to think of the entities exchanged between peers as events,
though that ignores a large part of its flexibility.

Peer communication can but need not happen over the
same network that Bro’s network analysers are monitoring.
Since Bro peers exchange highly security-relevant informa-
tion, it is important to ensure that only authorised peers are
allowed to talk to each other and that no other hosts can
eavesdrop into the conversation. Therefore, while event
communication itself remains loosely coupled, the peers’
identities are controlled tightly: peers authenticate each
other using certificates and communicate over encrypted
channels, using the SSL protocol. To conserve bandwidth,
connections can optionally be compressed.

4. Bro’s Event Model

We will now describe the event model we are currently
developing for Bro. Bro events capture asynchronously the
occurrence of specific activity. An event in Bro has a type
that is defined by a name and the sequence and types of
the event’s arguments. An event materialises by assigning

corresponding values to the event arguments. All state asso-
ciated with a Bro event is mobile: the values of the event’s
arguments are always distributed alongside the event itself
and are not bound to any particular node’s address space.
Once instantiated, all event handlers defined for its type are
triggered. This triggering can happen inside the Bro core,
or in a policy script using the event statement. In both
cases, all event handlers see the same version of the event,
i.e., event handlers cannot modify the event before another
event handler processes it. However they can of course
trigger different follow-up events according to their imple-
mentation. Events are also available to event handlers as
first-order data structures in the policy language: instances
of record type event contain elementary event parameters
such as the time of creation, a description of the Bro peer
that triggered the event, and more. This event-specific vari-
able is made available to the event handlers through the spe-
cial this variable, similar to the this/self concepts in
many object-oriented languages.

Figure 2 gives an example of an event handler.
conn stats is a user-defined record type that holds
per-connection accounting information. The default
attribute causes record fields to be initialised to zero.
active conns is a table indexed by connection iden-
tifiers (conn id records) and yielding conn stats
records. The write expire attribute causes entries that
remain unmodified for more than 5 minutes to be removed.
The event handler for the connection established
event has a single parameter, a connection record.
When triggered, the handler inserts a new conn stats
record with the current time taken from the last network
packet’s timestamp into active conns for the connec-
tion provided as an event argument. 2

4.1. Event Subscription

In addition to the local event processing mechanism just
described, triggered events can also be delivered to other
Bro instances. We use the widely used publish/subscribe
model [5] for letting each node specify in its policy which
events it would like to receive from its peers: a node re-
quests events by providing a regular expression that matches
the event names of interest. Only peers that have indi-
cated interest in an event type are delivered such events.
To allow for simpler expressions, the matching can be re-
stricted to event names in a given namespace. For example,
Worm::* stands for all events in the Worm namespace and
Worm::*infectee* represents all events in the same
namespace whose names contain the substring “infectee”.

2The “$” operator selects a field of a Bro record; similar to the “.”
operator in C.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

type conn_stats: record {
start_time: time;
num_pkts: count &default = 0;
num_bytes: count &default = 0;

};

global active_conns: table[conn_id] of conn_stats
&write_expire = 5 mins;

event connection_established(c: connection) {
local stats: conn_stats;
stats$start_time = network_time();
active_conns[c$id] = stats;

}

Figure 2. Example of a simple event handler.

A

B
C

D

Figure 3. Various event dispatching policies.

4.2. Event Dispatching

One of our first observations with distributing events was
that while broadcasting events to all subscribers is often ap-
propriate, some events require a different approach: one of
our standard events is a heartbeat in the form of a “ping”
event to a peer, which is answered with a corresponding
“pong” event. In the standard model, multiple clients ping-
ing a single peer at the same time will cause the entire sub-
scriber set of the pong event to receive a copy of every pong
event, even though each subscriber is only interested in the
pong event associated with its own pings. Clearly, the pol-
icy layer needs to be able to specify the event dispatching
mechanism more precisely. Our goals are exemplified in
Figure 3: the white node sends an event to the central node
whose processing triggers another event to which all of the
ring nodes are subscribed. Depending on the central node’s
dispatching policy, different subsets of the subscriber set are
included: (A) shows full broadcast, (B) limited broadcast
excluding the originator, (C) an arbitrary subgroup, and (D)
the originator only. Besides those, many other scenarios are
conceivable, such as anycast variations or event sampling.
Note that this means that we do not guarantee that every
subscriber sees every instance of event types it subscribed
to — that selection is up to the policy of the dispatching
node.

global pong(seq: count): event &dispatch=sender;

global signature_match(state: signature_state,
msg: string,
data: string):

event &dispatch=broadcast;

global heartbeat(): event &autotrigger=5mins;

function sender(e: event): set[event_peer] {
local receivers: set[event_peer];
add receivers[e$peer];
return receivers;

}

function broadcast(e: event): set[event_peer] {
return e$subscribers;

}

Figure 4. Example attributes.

Our model uses a combination of event handlers, event
record types, element attributes, and subscriber sets. Bro
already treats event handlers as first-order elements of the
scripting language, i.e., they can be assigned to variables,
called indirectly, etc. We extend this approach by tagging
event handlers with dispatch and autotrigger at-
tributes. Using dispatch, the user can specify a dis-
patcher callback that serves as an active forwarding fil-
ter: the dispatcher is passed the event as an instance of
the event record type and returns an instance of type
set[event peer] which contains all subscribed peers
that event will be forwarded to. The evaluation of this func-
tion and the actual event forwarding happen after the event
is triggered and before the event handlers are executed. Dis-
patchers can thus employ all set operators offered by the
Bro language. Since a dispatcher could theoretically re-
turn arbitrary nodes in the resulting recipients set, the set
is automatically intersected with an event type’s actual sub-
scriber set to make sure the recipients remain within the
subscriber set. The autotrigger attribute specifies a
temporal value and causes events to be triggered periodi-
cally once the specified period of time expires. We expect
that further event attributes will be added in the future.

Note that an event type can have multiple event handlers.
Allowing every event handler to use a different dispatcher
could lead to conflicts: for example, one event handler
could request that an event never be forwarded to any of the
subscribers, while another could request full broadcast. We
solve this problem by providing one event dispatcher per
event type: dispatcher assignment happens when an event
type is declared.

Figure 4 illustrates these concepts: pong events use the
sender function as their dispatcher, which selects only the
peer who originated the event in the resulting event peer
set. signature match events use the broadcast dis-
patcher which simply uses the entire subscriber set provided

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

with the event. Finally, heartbeat events will be trig-
gered automatically every 5 minutes.

4.3. Event Chains

Thanks to the event statement, an event handler can
trigger the occurrence of another event, leading to chains of
events (and consequentially, of event handler invocations).
This poses questions regarding the propagation of proper-
ties from one event to the next. We currently track event
chains only locally, i.e., among sequences of event handler
invocations on the same host. Note that a single event can
lead to multiple event chains because of the possibility of
multiple event handlers per event type: each new event can
start a new set of chains. In the light of our event dispatcher
model, we are primarily interested in the original source of
the event and the time of creation. We propagate these prop-
erties and leave the dispatch policies unchanged. That way,
in an event chain A → B → C of three events, C’s event
handler could still implement the dispatch policy sender
shown in Figure 4 that would cause event C to be sent only
to the peer from which the node originally received A.

4.4. Composite Events

Often we are not interested in the occurrence of a single
event but in the occurrence of a pattern of events. For ex-
ample, successful attacks often involve multiple stages: a
reconnaissance phase in which the attacker scans for vul-
nerable machines, the break-in itself into one or more vic-
tim machines, and finally the attempt of removing any ev-
idence and maintaining access to the machines. These
steps need not occur sequentially, and many of them have
different incarnations. However, each stage can generate
events. Therefore, detection accuracy benefits from com-
bining such patterns into semantically more high-level com-
posite events [12]. In general, composite events consist
of a set of input events, a number of conditions, and an
output event which is triggered if the conditions are met.
In the intrusion detection domain, many approaches have
been devised to correlate lower-level events into composite
events. The STAT suite models attack scenarios with state
machines, using a custom language [4]. Emerald features
P-BEST [8], a production-based expert system. Other cor-
relation schemes include identifying groups of events which
share common attributes [3]; transforming high-level attack
descriptions into acyclic directed graphs [7]; and match-
ing consequences of one step with the prerequisites of oth-
ers [10].

Implicitly, Bro has always used composite events: its
event handlers can keep state across invocations, allowing
policies that track precisely the type and parameterisation
of previous events. For instance, Bro’s scan detector tracks

trigger scanner raises { successful_scanner }

global scanners: set[addr] &write_expire = 1hr;

event is_scanner(ip: addr) {
add scanners[ip];

}

event connection_established(c: connection) {
if (c$orig_h in scanners &&

c$resp_h in local_nets)
event successful_scanner(c$orig_h);

}

Figure 5. Example of a trigger.

connection attempts per originator. If a certain scanning
threshold is reached, a new event is raised which reports
the detected scanner. Thus, the detector implicitly defines a
pattern of connection attempt events that eventually trigger
a composite event. With the development of the communi-
cations framework we have made the representation of com-
posite events more explicit by the introduction of triggers.
Triggers follow the event-condition-action paradigm [9, 2]
and consist of small self-contained programs that encode
the logic necessary to detect composite events. Triggers
consist of a set of input event handlers which evaluate the
composite event’s triggering condition which, if met, leads
to the triggering of possible output events. The key dif-
ference to other policy statements is that triggers are self-
contained and mobile. Thus, we can initialise triggers as
we see fit and transfer them from one peer to another3 while
any output events are sent to the peer that originated the trig-
ger. The state required for correlating input events is main-
tained inside the trigger’s scope. No external variables may
be referenced inside triggers, making trigger state similar in
spirit to closures in functional programming.

As an example, assume that we want to detect
scanners which have successfully set up a connection
into our internal network shortly after performing their
scans. More precisely, the system is to raise the event
successful scanner if (1) the event is scanner
is raised for an IP address X ; and (2) within the next
hour, the event connection established is raised
for a connection between X and a local responder. Fig-
ure 5 shows such a trigger: the is scanner han-
dler inserts detected scanners into the scanners set.
The connection established handler raises the new
event if such a known scanner has successfully setup a con-
nection to a local host.

3Bro already supports the serialisation of scripts into a binary represen-
tation [15]. Therefore, sending a trigger presents no technical difficulty.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

5. Discussion

5.1. Characterisation of Events

Given the vast application space of event-based systems,
it behooves us to consider carefully the characteristics of
events in the intrusion detection space. Successful intru-
sion detection needs to cope with an extraordinary range of
environmental context, policy implications, semantical am-
biguities, and technical limitations. We believe this has two
implications relevant to our discussion. First, there is strong
reason to believe that IDS events need to be just as seman-
tically variable as their problem setting. This implies that
the mechanisms for moving events around have to be rich
in terms of type information. Second, IDS events require
a great deal of context to allow justifiable decisions in the
analysis stage. The value of IDS events varies tremendously
with their context. This implies that particularly the prop-
agation of IDS events of high abstraction level will require
nontrivial optimisations to deal efficiently with the amounts
of state involved.

5.2. Threat Model

An attacker could attempt to abuse the event model to
cause harm to both local and remote Bro nodes. An at-
tacker without direct access to a Bro node could try to ex-
ploit a mechanism known to trigger events, in order to clog
a connection. The attacker could wait until this point to per-
form more sensitive activity that would not end up reported.
However, events typically are small (few hundreds of bytes,
at most), the attacker can abuse only a single connection,
and the receiver would notice the onslaught of events and
could react accordingly (for example disconnecting or re-
solving to sampling events, etc). We believe this risk to be
manageable. Impersonating a Bro node is harder for the at-
tacker: as mentioned in Section 3.3, we require mutual au-
thentication from peers upon connection establishment and
encrypt connections, using SSL. PKI-based authentication
is our main trust hurdle; once an attacker manages to break
into a host running Bro and manages to authenticate itself
successfully to the Bro peers, the node could be used to
willfully send fake or broken messages.

5.3. Topic- vs. Content-based Subscription

Our subscription mechanism at this point is topic-based:
each event type’s name defines a topic that subscribers in-
dicate interest in. However, support for content-based sub-
scription is provided with triggers because they can encode
arbitrary predicates for filtering event delivery. Note that
the content-based approach can be considered complemen-
tary to our dispatchers: we let the event-triggering node’s

policy govern which subscribers receive the event, whereas
triggers represent the potential recipient’s event interest.

5.4. Incorporating Type Information

We believe that extending Bro’s record types with object-
oriented features would improve our event processing reper-
toire considerably. While type-based publish/subscribe has
been discussed before [6], there remain interesting possibil-
ities for event management. For example, we could leverage
event argument types for more fine-grained event handler
selection: multiple event handlers for the same event type
could be provided with different subtype selections for the
event’s argument set. This opens many possibilities; one is
the use of this type distinction to restrict the invocation of
event handlers to the handler matching the provided types
most closely.

Location dependence of a record’s method implementa-
tion is another technique. When a record is transmitted be-
tween peers, the implementation of the type’s methods need
not necessarily be the same in both peers (unless the im-
plementation is specifically sent along). Such “spatial poly-
morphism” can be used to vary the behaviour of an event ar-
gument depending on the event’s location. We believe this
will have many uses, particularly given the fact that Bro’s
event handlers do not return a value while a record type’s
methods can.

5.5. Performance Considerations

While our dispatcher scheme provides great flexibility,
attention needs to be paid to performance: low-level events
can occur hundreds of times per second. Dispatcher evalu-
ation for each of those events could quickly lead to missed
events in other parts of the system. We tackle this prob-
lem from two directions: first, we believe that in a large
majority of cases, only a small number of simple dispatch-
ers will be used. We can implement them in the Bro core,
avoiding the overhead of script interpretation. Second, ad-
ditional language attributes could be used to indicate that a
dispatcher’s evaluation does not change, hence the resulting
subscriber set could be cached after a single evaluation.

5.6. Event Composition & Routing

Event triggers retain the comparatively low-level ap-
proach to expressing event patterns through state in script
variables. We are investigating the use of more high-level
language elements to ease this task; we envision a language
model similar to the one used in [12] but based on Petri nets.

Our event model is currently not very routing-friendly:
when node A subscribes to an event type at peer B, this
implies a direct connection between A and B. The only

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

www.manaraa.com

routing mechanism provided is the configuration of explicit
forwarding policies. This has to date not presented a prob-
lem and we defer more advanced routing support until we
experience stronger need. The same applies to the extension
of node-local event chain tracking to a global one, which
would allow the introduction of route tracing functionality
such as “source routing” or “record route” across event in-
stantiations.

5.7. Node Flexibility

Bro is a fairly heavyweight application that may not
be the best choice for the purposes of all nodes in a Bro
network. We have implemented a lightweight and highly
portable library supporting Bro’s communication protocol
called Broccoli 4 that we use to let other systems partake
in the event communication. Broccoli nodes can request,
send, and receive Bro events but do not support Bro’s pol-
icy language. The policy has to be implemented directly in
the code or through mechanisms such as configuration files.

6. Summary

We have presented our steps towards an event model for
the Bro IDS that we expect to provide the flexibility and
control necessary for creating large-scale distributed IDSs
based on Bro. Indeed, we believe that the combination of
Bro’s communication framework with policy-configurable
event processing allows us to think of Bro not only as a
distributed IDS but also as a more general system for highly
configurable distributed event processing. We plan to exper-
iment with increasingly large networks of Bro nodes, pos-
sibly spanning the current Bro deployments at institutions
such as ICIR, Lawrence Berkeley National Laboratory, and
Technische Universität München.

7. Acknowledgments

This work has been carried out in collaboration with In-
tel Research Cambridge and ICIR. We would like to thank
Jon Crowcroft, Holger Dreger, Anja Feldmann, and partic-
ularly Vern Paxson for interesting discussions and valuable
feedback.

References

[1] S. Axelsson. Intrusion Detection Systems: A Survey and
Taxonomy. Technical Report 99-15, Depart. of Computer
Engineering, Chalmers University, Mar. 2000.

4Broccoli is the healthy acronym for “Bro Client Communica-
tions Library”, found at http://www.cl.cam.ac.uk/˜cpk25/
broccoli/.

[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. Lecture Notes in Com-
puter Science, 1995, 2001.

[3] H. Debar and A. Wespi. Aggregation and Correlation of
Intrusion-Detection Alerts. In Proc. of Recent Advances in
Intrusion Detection, number 2212 in Lecture Notes in Com-
puter Science. Springer-Verlag, 2001.

[4] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An At-
tack Language for State-based Intrusion Detection. Journal
of Computer Security, 10(1/2):71–104, 2002.

[5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys,
31:114–131, jun 2003.

[6] P. Eugster, R. Guerraoui, and O. . C.H. Damm. On Ob-
jects and Events. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Tampa Bay, Florida, USA, Oct
2001.

[7] C. Krügel, T. Toth, and C. Kerer. Decentralized Event Cor-
relation for Intrusion Detection . In Proc. of Information
Security and Cryptology, volume 2288 of Lecture Notes in
Computer Science, 2001.

[8] U. Lindqvist and P. A. Porras. Detecting computer and net-
work misuse through the production-based expert system
toolset (P-BEST). In Proc. IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 1999.

[9] J. Lobo, R. Bhatia, and S. Naqvi. A policy description lan-
guage. In Proc. of AAAI, Orlando, Florida, July 1999.

[10] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack sce-
narios through intrusion alerts. In Proc. 9th ACM Confer-
ence on Computer and Communications Security, 2002.

[11] V. Paxson. Bro: A System for Detecting Network Intrud-
ers in Real-Time. Computer Networks (Amsterdam, Nether-
lands: 1999), 31(23-24):2435–2463, 1998.

[12] P. R. Pietzuch, B. Shand, and J. Bacon. A Framework for
Event Composition in Distributed Systems. In Proc. of the
4th ACM/IFIP/USENIX Int. Conf. on Middleware (Middle-
ware ’03), pages 62–82, Rio de Janeiro, Brazil, June 2003.
Springer.

[13] P. A. Porras and P. G. Neumann. EMERALD: Event mon-
itoring enabling responses to anomalous live disturbances.
In National Information Systems Security Conference, Bal-
timore, MD, October 1997.

[14] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heber-
lein, C.-L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal, and D. Mansur. DIDS (Distributed
Intrusion Detection System) – Motivation, Architecture, and
an Early Prototype. In Proc. 14th NIST-NCSC National
Computer Security Conference, 1991.

[15] R. Sommer and V. Paxson. Exploiting Independent State
For Network Intrusion Detection. Technical Report TUM-
I0420, TU München, 2004.

[16] E. H. Spafford and D. Zamboni. Intrusion detection using
autonomous agents. Computer Networks, 34(4):547–570,
2000.

[17] G. Vigna and R. A. Kemmerer. Netstat: A network-based
intrusion detection system. Journal of Computer Security,
7(1):37–71, 1999.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

